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Carbon Capture and 
Sequestration 

•  Goal: separate CO2 molecules 
from power plant flue gases and 
bury them underground 

•  46 Energy Frontier Research 
Centers (EFRC) established by 
DOE to tackle this and other 
energy issues: $777 million 
dollars over five years 

•  Collaboration with Prof. Berend 
Smit (UC Berkeley Chemical 
Engineering): simulate mobile 
molecules contained in host 
frameworks  

•  Millions of frameworks (need 
fast simulation) 
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CO2 molecules: red-grey-red rods 
and metal-organic framework  
Consisting of cobalt atoms (purple) 
Linked by an organic bridging ligand 
(D. M. D’Alessandro, B. Smit, J. Long 
“Carbon Dioxide Capture: Prospects for  
New Materials) 



Focus on Canonical Monte Carlo 
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•  Constant number (N), volume (V), and 
temperature (T): compute total energy 

•  Mobile methane molecules within an 
immobile MFI framework 

•  Interaction modeled with Lennard-
Jones potential with cutoff radius, R = 
12 Å 

•  Periodic boundary condition – small 
system size (V = 40 x 40 x 26 Å3 , 
hundreds of methane molecules) 

•  Energy grid (512x512x256) used to 
compute gas-framework interaction – 
use interpolation functions 

2D graphic illustration of the methane 
(silver and black), MFI (red) system 
Image courtesy of Dr. Jocelyn Rodgers 
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Quick Summary of Markov Chain 
Monte Carlo Algorithm 

Generate initial particle coordinates 

Select a random particle 

Propose a move: rnew = rold + Δr 
(Δr chosen from random distribution) 

Compute k = exp(-U(rnew)) / exp(-U(rold)) 
U -> total system energy 

Accept/reject move based on metropolis  
Probability, p = max(1, k) 



Use GPUs to obtain Speedup  
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•  GPU (graphics processing 
units) : More transistors 
devoted to data computation 
(CPU: cache, loop control) 

•  GPU simulations: Dirac GPU 
Cluster at NERSC  (44 Fermi 
Tesla C2050 GPU cards - 448 
CUDA cores, 3 GB GDDR5 
memory, PCIe x16 Gen2), 
double-precision, CUDA C 

•  CUDA 3.2 (CURAND Library) 
•  CPU simulations: Carver cluster 

at NERSC (2 quad-core Intel 
Nehalem 2.67 GHz), Intel 11.1 
Compiler Dirac GPU Cluster (NERSC) 

NVIDIA CUDA Programming Guide 
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Block 1*  

… 

Thousands of CUDA Threads: 
Parallelization Strategies? 

SM 1 

(2) CUDA thread per system** 
–  Embarrassingly parallel problem: no 

communication between threads  
–  Total number of independent methane – MFI 

system: (# CUDA threads per block) x (# 
CUDA blocks per SM) x (# of SM) 

–  Cannot utilize fast GPU memory 
–  Small system size (large DRAM usage) 

(1) CUDA block per system* 
–  CUDA threads work together to process the 

same system: (a) parallel Lennard-Jones (b) 
waste recycling Monte Carlo 

–  Total number of independent methane – MFI 
system: (# CUDA blocks per SM) x (# of SM) 

–  Utilize fast GPU memory 
–  Large system size 

Block  
    1 

Block  
    2 

Block  
    3 

Block  
    4 

Block  
    5 

Block  
    6 

Block  
    7 

Block  
    8 

… 

GPU 

Thread 1** 

Small system size: conduct multiple, independent MC simulations side-by-side 



Method 1: Parallel Lennard-Jones 
MC 
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•  Lennard-Jones (LJ) pair potential 
kernel:  bottleneck routine 

•  Threads in the same CUDA block 
share work to parallelize LJ 

•  Thread i is responsible for pair 
potential calculation of particle i, i
+32, i+2*32, … to ensure memory 
coalescing 

•  Combine partial results at the end to 
obtain new total energy using 
shared memory 

k, old 
k’, new 

k, old 

k’, new 
Thread i 

i 

i + 32 



•  Multi-proposal Monte Carlo – each 
thread generates its own 
displacement moves 

•  Only one of these moves (including 
old state) will be accepted 

•  Utilize “waste” by incorporating 
information gathered from other, 
rejected proposals 

•  Two kinds of waste recycling MC: 
(1) displacement, (2) uniformly 
sampled 

Method 2: Waste Recycling MC* 
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*D. Frenkel. “Speed-up of Monte Carlo simulations by sampling of rejected 
States” Proceedings of the National Academy of Sciences of the United 
States of America 101.5 (Dec. 2004) pp. 17571-17575.  
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Method 3: Embarrassingly 
Parallel MC 
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•  Each CUDA thread is responsible 
for conducting its own independent 
methane – MFI system 

•  Memory coalescing strategy (1): 
particle position data layout, avoid 
warp divergence for LJ memory 
transactions 

•  Memory coalescing strategy (2):  
choose the same particle index for 
all CUDA threads in each MC step, 
one memory transaction for particle 
translation proposals  

system k  
particle j 

system k+1  
particle j 

system k+2  
particle j 

Global particle position array 

system k  system k +1 system k +2 

particle j 



Results 
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•  Embarrassingly parallel MC: best performance 
•  Displacement WRMC > Uniform WRMC at denser systems 
•  Performance of parallel LJ MC should become similar to 

embarrassingly parallel MC at larger system size 

CUDA Block size = 32, one block per SM 
40 MC simulations, 1 million MC step 



Optimized Results and Speedup 
over CPU 
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Optimized Block configurations CPU (single CPU core) vs GPU  

Speedup = GPU iteration time / CPU iteration time 



Conclusion and Future Work 
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•  Three approaches to GPU canonical Monte Carlo 
simulations: (1) parallel LJ, (2) waste-recycling (3) 
embarrassingly parallel 

•  Embarrassingly parallel: best performance (limitation is 
at large system size, not enough GPU DRAM) 

•  GPU Grand canonical Monte Carlo (GCMC): vary the 
number of particles during MC simulation (add 
insertion/deletion moves) 

•  Obtain adsorption isotherm (number of molecules as a 
function of pressure) 



Main Collaborators 
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•  Prof. Berend Smit (UC Berkeley) 
•  Dr. Jocelyn Rodgers (LBNL) 
•  Weekly meetings (Tuesday 2pm @ Gilman Hall – UC Berkeley) 

    


