
GPU Monte Carlo Algorithms for Molecules
within a Microporous Framework

Jihan Kim

ICCS Workshop 1/26/11

Outline

•  Introduction
•  Computational Setup (Methane – MFI system)
•  GPU Monte Carlo Algorithms
•  Results
•  Conclusion and Future Work

2

Carbon Capture and
Sequestration

•  Goal: separate CO2 molecules
from power plant flue gases and
bury them underground

•  46 Energy Frontier Research
Centers (EFRC) established by
DOE to tackle this and other
energy issues: $777 million
dollars over five years

•  Collaboration with Prof. Berend
Smit (UC Berkeley Chemical
Engineering): simulate mobile
molecules contained in host
frameworks

•  Millions of frameworks (need
fast simulation)

3

CO2 molecules: red-grey-red rods
and metal-organic framework
Consisting of cobalt atoms (purple)
Linked by an organic bridging ligand
(D. M. D’Alessandro, B. Smit, J. Long
“Carbon Dioxide Capture: Prospects for
New Materials)

Focus on Canonical Monte Carlo

4

•  Constant number (N), volume (V), and
temperature (T): compute total energy

•  Mobile methane molecules within an
immobile MFI framework

•  Interaction modeled with Lennard-
Jones potential with cutoff radius, R =
12 Å

•  Periodic boundary condition – small
system size (V = 40 x 40 x 26 Å3 ,
hundreds of methane molecules)

•  Energy grid (512x512x256) used to
compute gas-framework interaction –
use interpolation functions

2D graphic illustration of the methane
(silver and black), MFI (red) system
Image courtesy of Dr. Jocelyn Rodgers

5

Quick Summary of Markov Chain
Monte Carlo Algorithm

Generate initial particle coordinates

Select a random particle

Propose a move: rnew = rold + Δr
(Δr chosen from random distribution)

Compute k = exp(-U(rnew)) / exp(-U(rold))
U -> total system energy

Accept/reject move based on metropolis
Probability, p = max(1, k)

Use GPUs to obtain Speedup

6

•  GPU (graphics processing
units) : More transistors
devoted to data computation
(CPU: cache, loop control)

•  GPU simulations: Dirac GPU
Cluster at NERSC (44 Fermi
Tesla C2050 GPU cards - 448
CUDA cores, 3 GB GDDR5
memory, PCIe x16 Gen2),
double-precision, CUDA C

•  CUDA 3.2 (CURAND Library)
•  CPU simulations: Carver cluster

at NERSC (2 quad-core Intel
Nehalem 2.67 GHz), Intel 11.1
Compiler Dirac GPU Cluster (NERSC)

NVIDIA CUDA Programming Guide

7

SM
1

SM
2

SM
3

SM
14

Block 1*

…

Thousands of CUDA Threads:
Parallelization Strategies?

SM 1

(2) CUDA thread per system**
–  Embarrassingly parallel problem: no

communication between threads
–  Total number of independent methane – MFI

system: (# CUDA threads per block) x (#
CUDA blocks per SM) x (# of SM)

–  Cannot utilize fast GPU memory
–  Small system size (large DRAM usage)

(1) CUDA block per system*
–  CUDA threads work together to process the

same system: (a) parallel Lennard-Jones (b)
waste recycling Monte Carlo

–  Total number of independent methane – MFI
system: (# CUDA blocks per SM) x (# of SM)

–  Utilize fast GPU memory
–  Large system size

Block
 1

Block
 2

Block
 3

Block
 4

Block
 5

Block
 6

Block
 7

Block
 8

…

GPU

Thread 1**

Small system size: conduct multiple, independent MC simulations side-by-side

Method 1: Parallel Lennard-Jones
MC

8

•  Lennard-Jones (LJ) pair potential
kernel: bottleneck routine

•  Threads in the same CUDA block
share work to parallelize LJ

•  Thread i is responsible for pair
potential calculation of particle i, i
+32, i+2*32, … to ensure memory
coalescing

•  Combine partial results at the end to
obtain new total energy using
shared memory

k, old
k’, new

k, old

k’, new
Thread i

i

i + 32

•  Multi-proposal Monte Carlo – each
thread generates its own
displacement moves

•  Only one of these moves (including
old state) will be accepted

•  Utilize “waste” by incorporating
information gathered from other,
rejected proposals

•  Two kinds of waste recycling MC:
(1) displacement, (2) uniformly
sampled

Method 2: Waste Recycling MC*

9

*D. Frenkel. “Speed-up of Monte Carlo simulations by sampling of rejected
States” Proceedings of the National Academy of Sciences of the United
States of America 101.5 (Dec. 2004) pp. 17571-17575.

x x
x

x

x

x
x x

Displacement WRMC

Uniformly Sampled WRMC

Method 3: Embarrassingly
Parallel MC

10

•  Each CUDA thread is responsible
for conducting its own independent
methane – MFI system

•  Memory coalescing strategy (1):
particle position data layout, avoid
warp divergence for LJ memory
transactions

•  Memory coalescing strategy (2):
choose the same particle index for
all CUDA threads in each MC step,
one memory transaction for particle
translation proposals

system k
particle j

system k+1
particle j

system k+2
particle j

Global particle position array

system k system k +1 system k +2

particle j

Results

11

•  Embarrassingly parallel MC: best performance
•  Displacement WRMC > Uniform WRMC at denser systems
•  Performance of parallel LJ MC should become similar to

embarrassingly parallel MC at larger system size

CUDA Block size = 32, one block per SM
40 MC simulations, 1 million MC step

Optimized Results and Speedup
over CPU

12

Optimized Block configurations CPU (single CPU core) vs GPU

Speedup = GPU iteration time / CPU iteration time

Conclusion and Future Work

13

•  Three approaches to GPU canonical Monte Carlo
simulations: (1) parallel LJ, (2) waste-recycling (3)
embarrassingly parallel

•  Embarrassingly parallel: best performance (limitation is
at large system size, not enough GPU DRAM)

•  GPU Grand canonical Monte Carlo (GCMC): vary the
number of particles during MC simulation (add
insertion/deletion moves)

•  Obtain adsorption isotherm (number of molecules as a
function of pressure)

Main Collaborators

14

•  Prof. Berend Smit (UC Berkeley)
•  Dr. Jocelyn Rodgers (LBNL)
•  Weekly meetings (Tuesday 2pm @ Gilman Hall – UC Berkeley)

